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A quantum chemical definition of the valency of an atom in a molecule is 
proposed. It is defined as the sum of the squares of the appropriate off- 
diagonal elements of the first-order density matrix of the system in an 
orthogonal basis. It is a measure of the degree of electron sharing of the 
given atom with the other atoms. Its properties such as invariance to rotation 
of the coordinate system, its limiting values as well as its relation to natural 
hybrids and bond orbitals are discussed. 
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1. Introduction 

Valency is a central concept in chemistry. However,  like many other chemical 
concepts, valency is rather vaguely defined. Chemists intuitively understand it 
to be the degree of binding of an atom in a molecule. Thus hydrogen has a 
valency of 1 in compounds like HCI, H20,  CH4; oxygen is divalent in H20,  
C120, MgO; carbon is tetravalent in CH4, CC14, C2H2 and so on. But this 
qualitative approach soon fails in many situations. For example one cannot easily 
decide whether the valency of the bridging H in B2H6 is 1, 2 or some other 
value. Other examples of such ambiguity are: B in B2H6, O in 03 and OLi4, C 
in C2, CO, CLi6, CH~- etc.. The traditional definition of valency may be formu- 
lated as the number of "univalent" or their equivalent atoms bonded to the 
given atom. This means effectively the number of covalent bonds formed by the 
atom in the formal valence structure of the compound. Such a formulation has 
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two major difficulties: (1) It is not possible to write down a single valence structure 
for compounds that exhibit the classical " resonance"  as CO or 03 for example. 
(2) If valency is computed merely from the number of covalent bonds in a formal 
structure, without regard for the strength of these bonds, one often obtains 
valencies that are abnormal in the traditional sense. Thus the bridging H in B2H6 
would be divalent, C would be hexavalent in CLi6 and pentavalent in CH~, O 
and Li would both be tetravalent in OLi4. While it is possible to postulate 
"hypervalency" in these compounds, such a definition of valency simply equates 
it to the coordination number or stoichiometry. This attributes a physical rather 
than chemical origin to valency and it is difficult to see how and when an atom 
attains "saturat ion" of its valency. Clearly any definition of chemical valency 
should have a well defined maximum that corresponds to a saturation of its 
bonding capacity. This does not mean that we reject hypervalency; we return 
to a discussion of it in Part II of this series. Here  we simply comment that a 
definition of valency that leads to traditionally abnormal values in many situations 
need not be adopted unless there are other compelling reasons to do so. 

The above two major difficulties may be sought to be removed if one defines 
the valency of an atom as the sum of its calculated bond orders to the other 
atoms in the molecule. This is simply a generalisation of the idea that Coulson 
[1] used in the definition of free valence for rr electron systems in molecular 
orbital theory. This definition clearly takes proper  account of the weak or strong 
nature of the bonds formed and has a maximum since most bond order  definitions 
involve the electron density in the interatomic regions. However,  here we come 
across problems that are usually associated with the definition of bond orders 
[2]. Briefly these are: (1) Most bond order  definitions are not invariant to a 
coordinate transformation. (2) Even when invariant to a coordinate transforma- 
tion, the definition of valency as the sum of bond orders often leads to abnormally 
high values even for the "ordinary"  compounds [3]. (3) Bond order basically 
measures the difference between the number of "bonding" and "ant ibonding" 
pairs of electrons. Contrary to this, the traditional concept of valency seems to 
imply the totality of electron sharing by an atom with other atoms. Therefore  
it appears that a quantum chemical definition of valency may desirably have the 
following properties: 

1) It must be invariant to coordinate transformations. 
2) It must be a measure of the extent of electron sharing by the considered 

atom with other  atoms in the molecule. 
3) It must have an upper limit corresponding to the saturation of covalent 

bonding of the atom. 
4) It may be related to the covalent chemical reactivity of the atom in the 

molecule. 
5) It should be deduced from the density matrix of the system. 

The LC AO form of MO theory is particularly apt to implement these features. 
The MO coefficients of AO's  define the density matrix and are a basis to 
determine the probability of electron distribution among the atoms. A lone pair 
should have valency zero and an electron pair equally shared between two atoms 
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should contribute a unit of valency to each of the atoms. Since the density matrix 
contains pertinent information about the system and can be defined in ab initio 
as well as semiempirical MO methods, the qualitative features of the definition 
do not depend on a particular MO approximation. Depending on the accuracy 
of the density matrix, which in turn depends on the wavefunction used, quantita- 
tive changes may occur for the valency value. 

2. Definition of Valency 

Wiberg [4] has proposed an index for the multiplicity of bonds between two 
atoms. He defined the "bond index", WA~, between atoms A and B as the 
square of the off-diagonal density matrix elements, Pab, between nonorthogonal 
orbitals a on A and b on B, summed over all such distinct orbital pairs: 

A B  A 

: Z Z -- E (2.1) 
a b a 

WAB as a bond index has the disadvantage that it is always positive and hence 
cannot describe antibonding situations. However as Wiberg has pointed out [4], 
this index is a measure of the extent of electron sharing between the two atoms. 
This is easily seen by expanding pab in terms of the molecular orbitals. The 
LCAO MO's are of the form: 

ff, l i  = ~, Cia~a ( 2 . 2 )  

where the ~b,'s are the atomic orbitals. Throughout this article we take the set 
{~b} to be orthonormal; i.e. 

f ~ba~bb = 8~b. (2.3) dr 

This simplifies the equations and makes their interpretation easier. In the numeri- 
cal applications also we consistently use orthogonalised AO's. Now by definition, 

Pab = ~ nzCiaCib (2.4) 
1 

Paa = E n,c/2a = qa. (2.5) 
1 

Here qa is the charge or the occupancy of the orbital ~b~. We take all c's and 
~b's to be real without loss of generality. From the orthogonality of the MO's it 
follows that 

a b 

= Y~ CibCjb = 8ij, 
b 

where Eq. (2.3) has been used. 
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We then obtain 

~ P 2 a b = ~ b ( ~ i n , c i a C i b ) ( ~ i n l C j a C j b )  

-= ~ Y, niniCiaCiaE CibC/b 
] i b 

= E E nintCiaCia•q. 
j i 

Thus 
Ep2ab = E n 2  z 

iC ia 
b i 

and so 

E 2 2 2  2 2 2  2 =Z =E n i C i a  n i C i a  - - q a .  - - P  aa 
b~a i i 

(2.6) 

(2.7) 

Eq. (2.7) takes a simpler form for closed shell systems, for which nl = 2. For 
such systems, 

P]o = 2 ~ 2c~,, - q ]  = 2qa - q ] .  (2.8) 
b~a i 

This quantity has the value zero when qa, the occupancy of orbital ~b~ is either 
2 or 0; that is, when we have either a lone-pair or an empty orbital. It has its 
maximum value of 1 when qa is 1. Therefore  this quantity is a measure of the 
extent of sharing of the q~ electrons in ~b~ with other atoms. For  another instance, 
when we consider a free radical where the odd electron is localised in a single 
atomic orbital, then in Eq. (2.7) Y.i 2 z n icia = 1 and q~ = 1 so that the valency 
contribution of the electron is zero. Thus the present definition of valency fulfills 
our requirement  (2) above. It may be noted that the quantity in Eq. (2.8) includes 
the density matrix elements between ~ba and other orbitals, say ~bal's on atom 
A. We may write 

2 2 2 B 2 
Z E = Z E = W a +  Pa6 4- Paa l  Paal  

bT~a b~a ~a I al ~a B g A  al ~a 

Wa 4- ~ 2 = p , ~  (2.9) 
al;~a 

with w~ defined by Eq. (2.1), and 

8 

w~= E Wa B= E ZP]b. (2.10) 
B ~ A  B r  b 

Now suppose we make an orthogonal transformation of the basis orbitals {~b} 
into a new set {h} such that the intraatomic off-diagonal elements of the new 
density matrix P '  are zero. The set {h}, originally proposed by McWeeny [5], 
are called the natural hybrid orbitals (NHO). In the N H O  basis we may rewrite 
Eq. (2.9) as 

y. 2 ~ (2.11) P a ' b ' =  ~ W a ' =  Wa '  
b'C:a" 8 ~ A  

since the intraatomic terms are zero in this basis. Here  the prime denotes the 
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N H O  basis. As we show in Sect. 4, it turns out that 

w~, = ~  wa. (2.12) 
tl I t~ 

In other words, the sum of the orbital bond indices of an atom in an orthogonal 
basis, defined as the sum of the squares of the density matrix element of the 
orbital with all orbitals on other atoms is invariant to natural hybridisation. More 
generally, it can be shown that ~,~ w~ is invariant to any orthogonal transformation 
of the basis (see Sect. 3). Further we shall prove that, in analogy with Eq. (2.8), 

2 
P~'b' = W~, = 2qa, -- q~, (2.13) 

b ' ~ a '  

for a closed shell system, where q~, is now the occupancy of the natural hybrid 
orbital a' .  By virtue of these properties it appears reasonable to term w, as the 
valency of orbital ~b,. Thus the valency of an atomic orbital in a molecule is 
defined as the sum of the squares of its density matrix elements with the orbitals 
on all other atoms, the basis set being orthonormal. 

We further define the valency of an atom as the sum of the valencies of its atomic 
orbitals. Thus the valency VA of atom A is given by 

A A B 

vA=Zwo:E Z Z 2 Pab. (2.14) 
a a B ~ A  b 

Equivalently, valency of an atom may be defined as the sum of the valencies of 
its natural hybrid orbitals. Thus 

A B 

VA=ZWa,=Z Z Z ~ P~'b'. (2.15) 
a'  a '  B ~ A  b' 

Also, from Eq. (2.13), for closed shell systems we can express V in terms of 
NHO occupancies as. 

VA = Z  2q~, _q2,  (2.15b) 
a '  

3. The Limit of Valency 

We may show generally that the requirement (3) that valency should have an 
upper limit is satisfied by the present definition. Eq. (2.7) may be rewritten as 

M O  

V a = Z Z  ~ n i (n , i a ) -qa .  (3.1) 
a i 

Since ~,i nlc 2 = q,~, the occupancy of orbital a on atom A, and 0 - qa -< 2 together 
with 0 -< n~ -< 2, we have the inequality 

O-<Z 2 nl (hie m) <- 2qa. (3.2) 
i 

Hence we have, for the valency 

O - < V A < Z  2 (2q~ - q a ) .  (3.3) 
a 
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This sets the limits on valency in terms of the atomic orbital occupancies. Each 
term in the summation in (3.3) is positive and has a maximum of 1, which occurs 
when q~ = 1. We may also write (3.3) as 

O<~ VA <~(2QA--~a q2a ) (3.4) 

where QA ( = ~  q~) is the total number  of electrons on atom A. Since normally 
y.~ q2 >y.~ q~ (=QA) (exception occuring when many q~'s are considerably less 
than unity), we have from (3.4), V ~ OA. This simply means that valency cannot 
normally exceed the number of electrons on the atom. However,  inner core and 
valence lone pairs, for which q~ = 2, do not contribute to valency and hence the 
usual limit of valency is the number of electrons on the atom minus the number 
of innershell electrons, lone pair electrons and single electrons localised on the 
atom and hence not involved in covalent bonding. This result is in agreement 
with the traditional view of valency. Valency can somewhat exceed the above 
number of electrons when, for instance, there is lone pair delocalisation on to 
other  atoms or when an electron partly occupies several atomic orbitals as in 
an extended basis set. In any case, the rigorous limit on valehcy is given by Eqs, 
(3.3) or (3.4). 

4. Invariance Properties of Valency 

4.1. Invariance Under Coordinate Transformation 
Consider the n •  first order  density matrix P as divided into atomic and 
interatomic blocks as, 

[Paa PAn "'" 
e . .  

LP,~A 

" '  PBL I. (4.1) 

/'L8 "'" PLLJ 

Here  the submatrix PAA of order m x m is associated with the m atomic orbitals 
on A. Consider further a 2 x 2 rotation of the orbitals on A which transforms, 
say the ith a n d / t h  orbitals of A. The n x n transformation matrix is 

T =  

-1 
0 

i 0 
0 

j o 
0 

m 0 
0 
0 

n _0 

i /" m n 
0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 x 0 y 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 - y  0 x 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

(4.2) 
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where x = cos o~ and y = sin a and a is the angle of rotation. The new density 
matrix P '  is then given by 

P'= TPT. (4.3) 

In P '  the off-diagonal elements that lie on the i, j rows and columns will be 
different from those of P, all other off-diagonal elements being unaffected. The 
new off-diagonal elements are given by, 

t 
P tki = P ik = Pik C O S  Ot - -P ik  s i n  a 

P'kj = P}k = Pik sin a + Pjk COS a~ 

Therefore,  

__ 2 2 2 P'k 2 + P'k 2 -- Pik +Pik = p2kl + P ik. 

and]  
~ i , j ~ k .  

(4.4) 

This means that the transformation leaves the sum p2AB + p 2 c + "  " " + P A L 2  

invariant, where P ~  stands for the sum of the squares of the elements of the 
block PA~. Similarly a 2 • 2 orthogonal transformation of the orbitals of B would 
leave the sum p2A + p 2 c  +'"  " +p2L invariant and so on. The transformation 
considered here is similar to that of the well-known Jacobi matrix diagonalisation 
procedure, though not identical with it. In the Jacobi procedure,  (i,/') are any 
two indices whereas in the present case they must be indices of atomic orbitals 
on the same atom. Only in the latter case is the above invariance on the blocks 
valid. Since a general transformation of the coordinate can be generated by 
successive application of the transformation of the type T of Eq. (4.2) to the 
various atomic blocks, PAA, PBn, etc., we obtain the general result that the sum 
of the squares of the interatomic blocks of the density matrix, hence by Eq. 
(2.14) the valency VA, is invariant under a coordinate transformation. 

4.2. Invariance to Natural Hybridisation 

Natural orbitals of a system are those for which the density matrix is diagonal 
[6], the diagonal elements being their occupation numbers. For a single deter- 
minantal wavefunction, the natural orbitals are the MO's themselves with occupa- 
tion numbers of 2, 1 or 0. But the MO's are generally delocalised over the whole 
molecule and do not resemble the chemists' conventional hybrid orbitals on 
atoms. McWeeny has suggested [5] that such hybrids could be obtained for an 
atom A by simply diagonalising the atomic block PAA of the density matrix. The 
eigenvectors of PAA are called the natural hybrid orbitals (NHO) of A. 

Recently Foster and Weinhold [7] have employed a modified procedure to obtain 
NHO's.  This involves certain numerical procedures which render the resulting 
NHO's  analytically rather intractable and we do not consider them presently. 
These authors have pointed out that the NHO's  do not generally resemble the 
conventional hybrids in that the former are not directed along bond axes. The 
"opt imum hybrids" obtained by McWeeny and Del Re [8] through a constrained 
variational procedure should also be distinguished from the NHO's  with which 
we are presently concerned. Our purpose here is to show that the McWeeny 
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NHO's are related to the valency of the atom. We will also see that these NHO's 
are related to the "bond orbitals" introduced in Sect. 5. 

The transformation which converts the AO basis to the NHO basis is simply a 
special case of the general transformation T of Eq. (4.2). Thus choosing the 
angle of rotation a such that pq = pj~ = 0 leads to the diagonalisation of the block 
PAA and thus to the NHO's of A. Hence it follows that for the transformation 
to NHO's also Eq. (4.4) is valid and therefore we conclude that the valency of  
an atom is invariant under natural hybridisation. This is the result that we quoted 
earlier as Eq. (2.12). 

To obtain Eq. (2.13) which relates the valency of an NHO to its occupation 
number for a closed shell system, we simply note that the derivation of Eq. (2.8) 
is equally valid for the NHO's also since the NHO's are orthonormal and we 
have only to remember that the occupancies and the MO coefficients now refer 
to the NHO basis. 

We must note by comparing Eqs. (2.8), (2.9) and (2.13) that for a given AO a, 
the bond index is the sum of its valency and intraatomic terms whereas the bond 
index and valency are identical for an NHO. It may also be pointed out that it 
is only the total valency of the atom and not the orbital valencies that is invariant 
under coordinate transformations. 

Interestingly, it is seen from the right hand side (rhs) of Eq. (2.13) that valency 
of A can be obtained from the NHO occupancy, i.e. from the atomic block PAA 
of the density matrix; or alternatively, as is clear from the left hand side (lhs) 
of this equation, it can be obtained from the interatomic blocks PAn, 
PAC, . . . .  PAL. Simultaneous use of atomic and interatomic blocks is therefore 
redundant for the determination of valency. In fact there exists a close relation- 
ship between valency and hybrid orbitals on the one hand and the "bond orbitals" 
and their eigenvalues obtained from the interatomic blocks on the other hand. 
We investigate these relations in the following section. 

5. Relations Between Valency, NHO's and Bond Orbitals 

Bond orbitals which represent a bond between two molecules were obtained 
earlier by Jug [9] by diagonalising the interatomic part of the density matrix 
involving these atoms. Thus for the A - B  bond, with m AO's on A and n on 
B, the sub matrix 

m 0 ',P~_] (5.1) 
OAn = n [-p-B21 ' 

is diagonalised. The bond order between A and B was evaluated from the 
eigenvalues of QaB. The eigenvalues of the various submatrices involving atom 
A, viz. QaB, OAc, . . . .  QAL are related to the valency of A as we prove now. 

Consider the following similarity transformation that diagonalises Ogn: 

C-1QABC = D (5.2) 
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where D is diagonal with diagonal elements hi,  h 2  . . . .  , Am§ We have then 

t r D  = t r  QAB and 

tr (/gD) = tr (OABQAB) 

But for any general matrix R 

tr (/~R) = Y. R i~. 
i,] 

Therefore  

(5.3) 

m + n  

t r ( / g D ) =  Z A~ (5.4) 
i 

tr (t~ABQAB)= 2~  P~b with a on A and b on B, (5.5) 
a,b 

where Pab are the elements of the block PAB and we have used Pab = Pba. Thus 
from Eqs. (5.3) and (5.5) we have, 

m §  
Z 2 = 2 Z  2 t~ i ( A B )  P a b .  (5.6) 
i ~ a,b 

As shown by Jug earlier [3], the h 's  occur in pairs (+hi) with Im-nl zeroes. 
Thus we can write 

m §  §  y, 2 2 
t~ i ( A S )  2 ~ (5.7) -~ A i(Al~) 

i i 

where the sum on the lhs is only over the positive h 's. From Eqs. (5.6) and (5.7), 

q-ue z 2 xi(a~ = Z pab -p~.~. (5.8) 
i a,b 

Now if we form the 2 2 sum P AB -k P A C  + "  " " + p 2 A L  we have,  

§ 

= h/(AB). (5.9) 
B ~ A  B ~ A  i 

The lhs of this equation is the valency of atom A by our definition Eq. (2.14). 
Hence 

VA E E ~ = 1~ i ( A B ) .  ( 5 . 1 0 )  
B ~ A  i 

Thus the valency of an atom is also given by the sum of the squares of the positive 
eigenvalues of the bond orbitals of the atom with another awm, summed over all 
the distinct atomic pairs formed by the given atom in the molecule. 

We recall that the valency of an atom may be expressed in terms of the N H O  
occupancies (Eq. (2.15b)), which is obtained from the atomic block PAA of the 
density matrix, as well as in terms of the h 's  which are obtained purely from 
the interatomic blocks PAn . . . . .  PAL (Eq. (5.10)). It is therefore interesting to 
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seek the connection between the bond orbitals (BO's) and the NHO's. Since 
the NHO's of an atom determine the valence pairing of the atom with all other 
atoms, it is apparent that the NHO's will be related not just to the eigenvectors 
of the matrices of the type QAB of Eq. (5.1), but to those of the complete 
off-diagonal submatrix QAB...L defined by [0 . . . .  

PBA 0 0 . .0 . .  

(~AB. . .L  = P C A  0 0 . . 0 . .  (5.11) 
. . . . . .  0 . .  0 . . 0 . .  

P L A  0 0 �9 . O .  �9 

We may call the eigenvectors of QAB...L a s  the natural bond orbitals (NBO's). 

Now it  is easily proved that the squares of the positive eigenvalues of QAB..L 
gives the valency of the atom. The proof is identical to that used in deriving Eq. 
(5.10). The matrix QAB has only to be replaced by QA~..L. The eigenvalues ~i 
of QA~..L have the same pairing properties as those of QAB. We may thus write, 

q-re 

VA = E C (5.12) 
i 

Thus it is immaterial whether the valency of an atom is calculated by any of the 
following four methods: 

1) From the squares of the appropriate off-diagonal elements of the original 
density matrix in the orthogonalised AO basis, Eq. (2.14), 

2) from the occupancies of the natural hybrids, Eq. (2.15b), 
3) from the squares of the eigenvalues of the diatomic blocks QAB, 

QAC,..., QAL, Eq. (5.10), or 
4) from the squares of the eigenvalues of the polyatomic block QAB..L. 

All these methods lead to the same value for valency. It is also important to 
note that the valency of an atom may be factored into a sum of its valencies 
towards every other atom in the molecule, as is obvious from Eq. (2.14) or Eq. 
(5.10). We shall make use of these properties when we consider numerical 
applications in the following article. 

It is highly interesting that the NHO's and the NBO's are intimately related. If 
there are m AO's in the basis set for atom A, then in general there will be m 
positive eigenvalues for QAB..L. An exception occurs if there are lone-pair NHO's 
on A (of occupancy 2), in which case the NBO eigenvalue will be zero for each 
such lone-pair. If we denote the NBO's of atom A as g A, X2 A, A �9 �9 � 9  Xm, it turns 
out that the "A component" of each X is an NHO of A. In fact, h ,A is of the form 

A X/ = (1/~/2) (NHO)A+function of orbitals on B, C, . . . .  L. (5.13) 

In the case of degeneracy of the NHO's and consequently of NBO's, one must 
take the appropriate linear combinations to obtain this relation. It is remarkable 
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that the NHO's  obtained from the atomic block PAA reappear  as such in the 
NBO's  obtained from the interatomic block OAB..L. This points perhaps to the 
fundamental role of the NHO's  in describing molecular binding. However,  such 
relations require further investigations and are beyond the scope of the present 
article. 

6. An Illustrative Example of Valency Relations 

In this section we shall illustrate the above relations on valency in the simple 
case of LiH. These relations are of course valid for the exact as well as approxi- 
mate wavefunctions, which use an orthogonal AO basis. Here  we employ the 
semiempirical SINDO1 wavefunctions [10]. 

The orthogonalised basis set of AO's  used consists of 2s, 2px, 2py and 2p~ orbitals 
on Li and ls  on H. The x-axis is along the internuclear axis. The density matrix 
is: 

2s 2px 2py 2pz is  
2s F0.5157 0.3211 000 0.00 0.81391 
2p~ /0.3211 0.1999 0.00 0.00 0.5067 / 
2pr | 0 . 0 0 0 0  0.0000 0.00 0.00 0 .0000 |  
2pz |o.oooo o.oooo o.oo o.oo o.oooo| 
ls  [_0.8139 0.5067 0.00 0.00 1.2844_]. 

From Eq. (2.14), the valency of Li is 

WLi ~- W2s -[- W2px -{- W2py "[- W2pz 

= 0.8139 z + 0.50672 + 0 + 0 

= 0.919. 

It is easily seen that Eq. (2.14) gives VH also as 0.919. Now we verify Eq. (2.15b) 
which gives valency in terms of the NHO occupancies. For H, the N H O  is the 
ls  orbital itself which has occupancy 1.2844. Therefore,  from Eq. (2.15b), 

VII = 2 • 1.2844 - 1.2844 z = 0.919. 

For Li, the NHO's  are the eigenvectors of the matrix 

2s 2p, 

0.  117 
0.3211 0.1999_1 

since we need not consider the empty py and Pz orbitals. The eigenvalues of this 
matrix are 0.7156 and zero. The natural hybrid orbital corresponding to the 
eigenvalue 0.7156 is 

(NHO)Li = 0.8489 (2s) + 0.5285 (2px). (5.14) 

From Eq. (2.15b) we now have, 

VLi = 2 • 0.7156 -- 0.71562 = 0.919. 
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This verifies the invariance of valency to natural hybridisation. It may be noted 
that the appreciable departure of the occupation number of the NHO's of Li 
and H, viz. 0.7156 and 1.2844 from the ideal value of unity reduces the covalency 
from the maximum of 1 to 0.919. 

The natural bond orbitals of Li, which are identical to those of H in this diatomic 
case, are, by definition, the eigenvectors of the partial density matrix: 

2s 2px 2py 2pz ls [0.0 0.0 0.0 0.0 0.8  91 
0.0 0.0 0.0 0.0 0.5067[ 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 
0.8139 0.5067 0.0 0.0 0.0 

The eigenvalues are 

-0.9587, 0.0, 0.0, 0.0, +0.9587 

The eigenvector corresponding to the positive eigenvalue with which we are 
concerned is 

0.6003 (2s)+0.3737 (2px)+0.7071 (Is). 

It is readily seen that the Li part of this orbital is simply 1/~/2 times the NHO 
on Li given by Eq. (5.14), thus verifying the relation Eq. (5.13). Valency of Li 
is calculated from the eigenvalue 0.9587 using Eq. (5.12), 

VLi = 0.95872 = 0.919 

which is identical to the value obtained by the other methods above. 

7. Conclusions 

In an attempt to quantify the chemists' concept of valency, we have formulated 
a definition of valency so that its value can be calculated from the density matrix 
of the system. As will be shown in the subsequent article, this definition repro- 
duces in most cases the chemical "common sense" values of valency. According 
to this definition, valency is a measure of the degree of electron sharing between 
atoms. We have demonstrated the invariance of this definition to coordinate 
transformations. We have also seen that valency has a limit generally equal to 
the number of electrons on the atom minus its inner shell, lone pair and localised 
odd electrons. We have also established the relation of valency to the natural 
hybrid orbitals and natural bond orbitals of the atom in a molecule. Molecular 
binding may be viewed as a reorganisation by the atoms of the occupancies of 
their natural hybrids from the atomic values so as to attain increased valency. 
Thus effects such as lone-pair donation or delocalisation, d-orbital participation 
in second-row atoms, charge transfer, etc. could be quantitatively discussed in 
terms of the valency changes accompanying these effects. 
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Since the  p r e s e n t  def in i t ion  of va lency  is gene ra l  in the  sense  tha t  it  d e p e n d s  
only  on  the  dens i ty  mat r ix ,  we have  the  poss ib i l i ty  of genera l i s ing  the  z r -e lec t ron  
concep t  of f ree  va lence  to  s igma sys tems also and of re la t ing  the  reac t iv i ty  
p r o p e r t i e s  of molecu les  to the i r  f ree  valences .  Such p r o b l e m s  are  t a k e n  up  in 
the  fo l lowing  art icle.  
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